Coding Theory: Problems 1

. For each of the following codes C; C 3, i = 1,2,...,5, calculate d(C;):
Oy = {000,111},  Cy=C,U{222}, C3=C,U{012},
Cy=C3U {011}, Cy=CyU {210}.

. Let C be a binary (9, 6,5)-code, transmitted over a binary symmetric channel with
symbol error probability p = 0.01. Find an upper bound on the word error probability
for any codeword.

. Construct if possible binary (n, M, d)-codes with the following parameters:
(6’ 27 6)7 (3’ 87 1)7 (47 8’ 2)’ (5’ 37 4)7 (87 307 3)'
If no such code exists, prove it.

(a) Show that a 3-ary (3, M, 2)-code must have M < 9.

(b) Show that a 3-ary (3,9,2)-code does exist.

(c) Generalize the results of (a) and (b) to g-ary (3, M, 2)-codes, where ¢ > 2.
(d) Deduce A4(3,2).

. In our table of values for As(n,d), there are four pairs (n,d) where As(n,d) is in fact
the largest integer allowed by the Ball Packing Bound (these entries are marked with
asterisks). Which, if any, of these correspond to perfect codes?

. A binary block code is required which is capable of representing 82 distinct message
words and detecting up to 3 errors in each transmitted codeword. Use the tabulated
data for As(n,d) to determine the minimum possible block length of such a code.

. Prove that if C is a g-ary (n, M, d)-code then there exists a g-ary (n — 1, M', d)-code
with M’ > M/q. Hence show that A4(n,d) < gAs(n — 1,d). By referring to the
tabulated data for Ay(n,d), or otherwise, find the best upper bounds you can on
A2(17,3) and As(17,5).

[Hint: for the first part, partition C according to the value of the last digit of each
codeword.]



Coding Theory: Solutions 1

1. d(C1) =3 =4d(Cy), d(Cs) = 2, d(Cy) =1 =d(C5).
Note that C; C Cj11 so we know immediately that d(Cj;1) < d(Cy).

2. Since d(C) = 5 we know that any codeword z will be correctly decoded if 0, 1
or 2 errors occur in transmission. Hence

Pooer(z) > (1 —p)° + ( ? > p(1—p)®+ ( g )p2(1 —p)" > 0.9999197

Hence, P,,.(z) =1 — P.(z) < 0.0000803

3. e (6,2,6): C ={000000,111111}.
e (3,8,1): C =3 = {000,001, 010,011,100, 101,110, 111}.
e (4,8,2): C = {0000,0011,0101,0110,1001,1010,1100,1111}. Note we've
taken a (3,8,1) code and extended it to a (4, 8,2) code as in the proof of
Theorem 16.

e (5,3,4): Assume that such a code exists. Then by Theorem 16, there exists
a binary (4,3, 3)-code C. Without loss of generality, we may assume that
0000 € C (if not, choose z € C and in every position where z has a 1,
interchange 0 <» 1 in all codewords. The resulting code C has the same
parameters as C' and contains 0000). C' contains two other codewords,
y and z say, both of which must have at least three 1s, else they lie too
close to 0000. But then y, z differ in at most two places, so d(y,2) < 2, a
contradiction. Hence no such code exists.

e (8,30, 3): By ball packing, any binary (8, M, 3)-code has M < 28/(1+8) <
29. Hence no such code exists.

4. (a) M < 3%(-1 = 32 — 9 by the Singleton Bound.
(b) C = {000,011, 022, 101,112,120, 202, 210,221} is a 3-ary (3,9, 2)-code.
(c) For any g-ary (3, M,2)-code, the Singleton Bound implies that M < ¢
But
C ={(a,b,a+bmodgq)|a,be X}
is a g-ary (3, ¢%,2)-code, where ¥, = {0,1,...,q — 1}.
(d) Hence A,(3,2) = ¢°.



5. The (7,16,3), (15,2048,3) and (5,2,5) codes are all perfect. However, the
(6,2, 5)-code is not because if ¢ =2, n =6, M =2 and t = 2, then

t
n r
MZ(T)(q—l) =2(14+6+15) =44, but ¢"=2°=64.
r=0

Hence the Ball Packing Bound is not attained.

6. By Proposition 6, we need d(C) = 4. Hence the required block length is
the smallest n for which As(n,4) > 82. But by Corollary 17, As(n,4) =
Ay(n — 1,3). Examining the table we see that n — 1 = 11, and hence n = 12.

7. Given C, a g-ary (n, M,d)-code, define C; = {z € C'|z, = i} for each i € X.

Then
c=1|]c
i€x,

At least one C; must have |C;| > M/q, for if not, then

M=|Cl=|| |G| =D ICI<qgx(M/q)=M,

i€%, i€x,

a contradiction. Given such a C;, we may construct a (n — 1, M’, d)-code C",
with M’ = |C;|, by deleting the last digit from each codeword in C;. Note that
C' still has minimum distance d since every pair of codewords in C; agrees in
the last place, and hence differs in at least d of the remaining n — 1 places

(d(C) > d(C) = d).
It immediately follows that A,(n,d) < qA,(n — 1,d).
Using the tabulated bounds for A5(16,3) and As(16,5), we deduce that

Ay(17,3) < 2A5(16,3) < 6552 and As(17,5) < 2A5(16,5) < 720.
These bounds are considerably better than the singleton bounds
Ay(17,3) < 2% = 32768,  Ay(17,5) < 2" = 8192,

and the ball packing bounds

17 17

< 7282 A(17.5) < < 852,
1+17 ’ 2 ’)—1+17+136

In fact A9(17,3) < 6552 is the best so far discovered. The best known upper
bound on Ay(17,5) is 680.
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